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Abstract  
 

We present hierarchical master-slave 
architecture for performing parallel raytracing 
algorithms that can support a large population of 
participating clients and at the same time maintain 
fault tolerance at the application level. Our design 
allows for scalability with minimal data redundancy 
and maximizes the utilization of each client involved 
in the raytracing process. Our results show that this 
three-layer system can survive any type or number of 
client failures, and any non-concurrent server failures, 
while maintaining a near linear increase in 
performance with the addition of each new processing 
client.  
 
 
1 DESCRIPTION   
 
 Raytracing algorithms are used widely in the 
movie industry to generate photorealistic two-
dimensional images of three-dimensional artificial 
worlds. They are extremely computationally intensive, 
but ideal for parallelization, because each projected 
ray used to generate a pixel in the final image requires 
a set of independent calculations that are almost never 
related to the calculations for a neighboring ray. 
Therefore, each pixel in the scene has the possibility 
of being composed completely in parallel among 
processors that share the scene data. A simple 
implementation of a parallel raytracer would involve a 
single server managing the distribution of pixels of a 
scene, and a number of clients responsible for 
rendering some small portion of the scene. This is a 
typical application of the master-slave design pattern 
[7]. Unfortunately, the arrangement contains a single 
point of failure and a potential for a communications 
bottleneck at the master server as the number of 
rendering clients increases. 
 

In order to effectively handle any large 
number of clients and various failures in the network, 
we designed our raytracer in a three-tier structure 
composed of a master server, slave servers, and 
clients. The master server manages the setup of the 
hierarchy and first-level distribution of work to slave 
servers, which manage fine-grained distribution to 
clients that perform the actual work of rendering 
pixels. This structure isolates network communication 
in the event of a failure and distributes the overhead 
involved in managing a very large number of 
rendering clients.  

2 BACKGROUND 
 

Raytracing is considered to be an 
“embarrassingly parallel” task, and therefore 
distributing the work of rendering pixels to multiple 
machines is not new to the field of computer graphics 
[3, 5, 6]. Our work focuses on the distribution of the 
rendering task instead of the rendering itself; therefore 
the details of these previous systems are not relevant 
to this paper. The concept of a hierarchical master-
slave design and its benefits to the field of distributed 
computing is also not new [1, 2, 4]. Our primary 
contribution to this body of work is the design and 
implementation of a hierarchical master-slave 
architecture that specifically addresses fault tolerance. 
We present a raytracer that utilizes this design and 
demonstrate its suitability for high performance and 
high population, distributed applications.   
 
3 DESIGN 
 

Our parallel raytracer is based upon a 
variation of the master-slave design pattern. A single 
master server acts as a master to a number of slave 
server machines. Each of these slave servers, in turn, 
interacts with a number of clients. The master server 
handles the drawing of the graphical user interface, 
ensures proper distribution of the scene data, separates 
the image to be rendered into batches of lines for each 
server, and is responsible for evenly distributing 
incoming clients among slave servers. The slave 
servers, on the other hand, manage their own subset of 
clients assigned by the master, and are responsible for 
managing a batch of work spread amongst these 
clients. One of these slave servers acts as the next-of-
kin, which takes over as master in the event that the 
master server fails. Finally, the rendering clients are 
the workers of the group. After receiving scene data 
from the master, they are assigned to a server and 
sequentially render single lines of the final image. 
Data is passed back from the rendering clients to their 
respective slave server, which eventually returns it in 
a batch to the master for final composition.  
 

The primary benefit of this hierarchical 
design is the resilience to failure of not only the 
clients, but the servers as well. A single-tier master-
slave system could potentially handle the failure of the 
server, but the flood of clients connecting to a new 
server could result in a variety of problems including 
excessive recovery time, connection timeouts and 
excessive network overhead. In our system, a failure 



affects only a small subset of the machines involved in 
the system. The slave servers are only concerned with 
their connection to the master and the active clients 
are only concerned with their connection to a single 
slave server. As a result, there is a substantial 
reduction in potential recovery time and less chance of 
further disconnections in the event of a failure.  

 

 
Figure 1 - Network Topology 

 
The system will only fail if the master and 

next of kin simultaneously fail. Given the probability 
of the master server failing, PM, and the probability of 
the next of kin failing, PNK, the probability of the 
system failing is represented by the variable PF, where 
PF = 1 – PM * PNK. 

 
This design allows us to distribute not only 

the actual rendering of the final image, but also the 
management of clients. Our system can handle a large 
number of rendering clients, where a traditional 
single-tier master-slave system could fail as the single 
server is overwhelmed by connection management 
overhead. In our system, the relationship between the 
master server and slave servers very closely parallels 
the relationship between the slave server and its 
clients. These relationships are nearly identical, except 
that each is operating at a different level of granularity 
on the final image to be rendered.  
 
3.1 Master Server 
 

The master server has five primary tasks: 
GUI rendering and image composition, scene 
management, rough distribution of lines to render, 
initial client connection handling, and assignment of a 
next-of-kin.  

 
Rendering of the graphical user interface 

consists of drawing a window containing all the 
currently rendered lines. The master is the only 
process that draws the scene to the screen, and only 
the master and the next-of-kin server have a copy of 
this rendered image data.  This allows for sufficient 
redundancy in the event of a master server failure, 
without excess network overhead resulting from 
sharing the image data with every process in the 
group.  

 

The scene data for the raytracer is a 
collection of objects that describe geometric figures 
with varying locations, sizes and other properties in 
the scene to be rendered. The master server is 
responsible for sharing the scene data with all slave 
servers, which later pass it along to their respective 
clients.  

The master server is also responsible for 
partitioning the image into portions to be sent to each 
slave server. We chose the finest granularity of image 
distribution to be lines, and the batches sent to each 
slave server to be groups of lines. The master keeps 
track of this distribution, and ensures that all lines are 
eventually rendered. If any slave server fails, the batch 
of lines assigned to the lost server is not rendered, and 
will be properly reassigned when all other lines have 
finished.  

 
A client connecting to the raytracer initially 

connects to a master server, and is either assigned to 
be a slave server or is redirected to an existing slave 
server for rendering. The master manages the 
spawning of new slave servers and the distribution of 
clients among them. When a client connects to the 
master, it queries for any available client spots from 
slave servers. If an open spot exists, then the client is 
redirected. Otherwise, the client is commanded to 
become a slave server and ready itself for accepting 
new client connections.  

 
The master server selects one of the slave 

servers as a next-of-kin. This next-of-kin will take 
over as master if the original master fails. Whenever 
the assignment of a next-of-kin takes place, all other 
slave servers are notified of this assignment and are 
made aware of the network address of this backup 
master. This knowledge allows all slave servers to 
seamlessly switch to a new master (the next-of-kin) in 
the event of death of the original master server.  
 
3.2 Slave Server 
 

Each slave server is responsible for (i) 
managing its own group of clients, (ii) distribution of 
a batch of lines to be rendered, and (iii) assuming the 
next-of-kin role when appropriate. Slave servers are in 
charge of clients that have been redirected to them by 
the master. If a client fails, the slave server handles the 
failure by ensuring that the line assigned to the lost 
client is properly reassigned to an active client, and 
then continues rendering the batch of lines as normal. 

 
Upon first connecting to a slave server, 

clients receive scene data if they do not already have 
it.  They are then continually assigned single lines for 
rendering. When the rendering of a group of lines has 
completed, the slave server sends a block of image 
data back to the master server, which is later displayed 
on the master server’s screen. If a slave server has 
been assigned as next-of-kin, it shares all the currently 
rendered image data with the original master. If the 
original master fails, then the next-of-kin server 



immediately becomes master and beings accepting 
connections.  
 
3.3 Client 
 

The client contains an instance of the engine 
that performs raytracing computations and renders a 
single line of the given scene at a time. The features of 
the raytracer engine used in the clients include various 
types of texturing on objects, reflection, refraction, 
Boolean operations between objects, and anti-aliasing. 
The recursive ray construction and intersection 
algorithms used to render the scene are well-known 
and the specifics of the design of the engine are out of 
the scope of this paper [6].  
 
4 IMPLEMENTATION 
 

Execution of the raytracer is begun by 
initializing the master server and starting several client 
processes. Initially there are no slave server processes, 
and the master server determines the number of slave 
servers to instantiate. The master delegates the slave 
server role to the first connecting client; therefore 
clients must be able to become a slave server. 
Additionally, slave servers must be able to assume the 
role of master server if the master fails. All processes 
are started from the Driver class, which allows clients 
to assume the role of slave server and slave servers to 
assume the role of master server. The driver will start 
a master server process if the master flag is specified. 
If the client flag is specified, then a client process is 
instantiated and connects to the given host. 

 
4.1 Master 

 
When the master process is started, it 

immediately constructs a server socket running on a 
predetermined port. To simplify the recovery process, 
a fixed port number is used. In the event of a master 
failure, a slave server assumes that the next-of-kin will 
become the master and open a socket to the 
predetermined port. All processes initially connect to 
the master server and are assigned to their respective 
roles in the raytracer topology. A client is assigned a 
slave server role if all connected servers are full, 
which occurs when a predefined number of clients are 
connected to each slave server. Initially the project 
had intended to adjust this value dynamically to allow 
for scalability. However, experimental results 
concluded that a static value of 10 produces the best 
performance. 

 
The master server must be able to accept 

client and slave server connections. A client connects 
to the master to establish the initial connection and 
disconnects from the master once it is assigned to a 
slave server or told to become a slave server. A client 
also connects to the master if the client’s server fails 
or the server redirects the client. When a client 
connects, the master is responsible for assigning the 
client to a slave server. The master iterates through the 
server list and queries each slave server for a client 

opening. If a slave server response specifies an 
opening, then the client is redirected to the slave 
server. If no slave servers have openings, then the 
client is assigned to become a server.  The master 
server does not maintain an internal list of clients for 
each server, because clients can be dropped from the 
topology without notifying the master. 

 
A slave server connects to the master server 

to establish the initial connection and is not 
disconnected until rendering has completed. A server 
may also become disconnected in the event of a 
failure, which results in the slave server connecting to 
a new master server. When a slave server connects, 
the master server adds the server to the list of known 
servers and spawns a new thread to manage socket 
communication. If this is the first connecting slave 
server, then it is assigned the role of next-of-kin. 
Additionally, the next-of-kin is sent a copy of the 
rendered image data. This redundancy allows the next-
of-kin to continue rendering with minimal data loss in 
the event of a master server failure. 

 
After connecting, the slave server sends a 

message to the master specifying if the slave server 
has the scene data. A slave server will already have 
the scene data if it was started as a client process and 
later redirected to a slave server role. The master 
responds with the host name of the next-of-kin and the 
scene data if requested. The server is sent batches of 
lines to render until rendering has completed. When 
the server finishes a batch of lines, it responds with 
the rendered image data. This data is forwarded from 
the master to the next-of-kin to allow for redundancy. 
When rendering completes, the master sends the slave 
server a message specifying there are no further lines 
to render. The slave server forwards the message to all 
of its clients then terminates.  

 
In addition to creating the network topology, 

the master server is responsible for assigning batches 
of lines to render and synchronizing the rendered 
image data. The master server only keeps an index 
into the image and a list of the completed lines, 
therefore the master server does not know which lines 
are currently being rendered. Each time a batch of 
lines is requested, the master server starts from the 
current index. The master server adds uncompleted 
lines to the batch until the batch is full, or all lines 
have been considered. The method allows the master 
to delegate batches of lines to render while 
maintaining minimal data structures. It also results in 
multiple servers assigned the same line to render, but 
this condition only occurs while rendering the final 
batch of lines. 
 
4.2 Slave Server 
 

After connecting to the master server, a slave 
server constructs a server socket running on a free 
port. The server socket only accepts client 
connections. When a client connects, the slave server 
checks for an open client slot. If the slave server is 



currently full, then the client is redirected to the 
master server.  Otherwise the client is added to the list 
of clients and a thread is spawned for socket 
communication with the client.  The next-of-kin slave 
server is implemented identically to every other slave 
server, except it has the knowledge of its status as 
next-of-kin.  
 
4.3 Client 
 

The client process connects to either the 
master or any slaver server, and can disconnect and 
redirect to an aribitrary network address if a slave 
server sends such a message when transferring the 
client to the master. Upon assignment to a slave server 
rendering slot, the client receives and stores a copy of 
the scene data, and the network addresses of the 
master and slave servers. The client then repeatedly 
receives a line number and returns a batch of pixel 
colors. By combining each single line number with the 
given image size stored in the scene data, the client is 
able to compute the correct number and location of 
rays to cast into the scene. The raytracer render is 
implemented with standard recursive raycasting 
methods described in other literature [6].  
 
4.3 Fault Tolerance 
 

Recovery from client failures is the simplest 
case, because there is at most one process 
communicating with the client. The client is in one of 
three possible states during a failure: connected to the 
master, connected to a slave server, or redirecting. No 
slave server or master server error handling is 
necessary if a client fails while in the redirecting state, 
because there are no open sockets to the client. If a 
client failure occurs while connected to the master 
server, the master server catches the socket exception 
and attempts to close the socket. If a client fails while 
connected to a slave server, the slave server catches 
the socket exception, attempts to close the socket, 
removes the client from the list of clients, and 
reassigns the line being rendered by the client. After a 
failure, a client will attempt to reconnect to the master 
and the next-of-kin. If both of these attempts fail, then 
the client will terminate. 

 
Handling a slave server failure is more 

complicated than a client failure, because many clients 
may be connected to the slave server during the 
failure. When a slave server fails, the master server 
will catch the socket exception and remove the slave 
server from the list of servers. Additionally, each of 
the slave server’s clients will catch a socket exception 
and redirect to the master server. The master server 
will assign one of the clients the slave server role if 
there are not enough client slots. The remaining slave 
servers are unaffected by the failure, because they 
have no knowledge of the server. If a server assigned 
next-of-kin fails, then the master server must perform 
additional error handling. The master server picks the 
next slave server in the list of servers as the next-of-
kin and informs the remaining slave servers. If there 

are no remaining servers, then the next slave server to 
connect is assigned the role of next-of-kin. 

 
If a master server failure occurs, the topology 

of the network must be reconstructed. When a master 
server fails, the next-of-kin disconnects from its 
clients and assumes the role of master server. The 
remaining slave servers will detect the failure and 
attempt to connect to the new master server. Multiple 
attempts may be necessary, because the server may 
detect the failure before the next-of-kin assumes the 
role of master server.  Experimnets demonstrated that 
five connection attempts were adequate for our tests. 
The disconnected clients will attempt to reconnect to 
the previous master server and then attempt to connect 
to the new master server. The clients connected to the 
remaining slave servers will be unaffected by the 
failure and will keep rendering while the slave server 
is connecting to the new master server. This 
implementation allows the raytracer to continue 
rendering during the error recovery phase.  
 
5  RESULTS 
 
 The complex scene object used for this 
performing testing makes use of all of the features of 
the rendering algorithm implementation, described in 
section 3.3. The final rendered image, as shown in 
Figure 2, involves varying regions of calculation 
complexity, consisting of a jack-o’-lantern, a 
refractive lens, a mirror and multiple light sources. 
The tesing environment consisted of 50 Pentium 4 2.3 
Ghz machines with one gigabyte of RAM on a gigabit 
network. 
 

 
 

Figure 2 - Final Rendered Image 
 
 The first experiment analyzed the scalability 
of the raytracer. Four different client configurations 
were tested and the results are displayed in Figure 3. 
The raytracer was run with five clients per server and 
a batch size of 30. The graph displays a near linear 
speedup between the number of clients and run time. 
However, the increase in performance per additional 
client decreases after 30 clients. The raytracer should 



be able to scale to about 100 clients, adding additional 
clients would increase run time due to network 
overhead. The additional of new clients also affects 
the time required to construct the network topology. 
 
 The approximate number of messages sent 
while rendering a 1000 by 1000 pixel image is 
displayed in Figure 4. The number of messages was 
calculated as double the sum of the total number of 
messages sent by the master server and the number of 
messages sent by each slave server to each client.  
This function was used to approximate total messages, 
because the servers communicate with the master 
server in a master-slave pattern and the clients 
communicate with the server in a master-server 
pattern. A non-linear relationship between clients and 
total messages resulted, due to the three-layer design. 
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Figure 3 - Performance vs. Number of Clients 
 

The results for an experiment with varying 
numbers of clients per server and a batch size of 30 
lines are shown in Figure 5. A ratio of 10 clients per 
server produced the best results for the three-layer 
design. The experiment with 20 clients resulted in the 
worst performance, because the number of clients was 
not a factor of the number of lines in a batch. This 
slowdown occurs, because some clients are idle while 
waiting for the next batch of lines from their 
respective servers. 
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Figure 4 – Message Traffic vs. Number of Clients 
 

The fault tolerance of the system was tested 
by initially starting 19 processes, shutting down all 
except one of the processes, and restarting 6 more 

processes. A ratio of five clients per server was used; 
therefore the initial topology was a single master 
server, three slave servers, and fifteen client processes.  
Random processes were closed until a single machine 
remained, which assumed the role of master server. 
There was a minimum of fifteen seconds between 
each server failure. Clients were disconnected alone or 
in groups of two. The remaining process successfully 
assumed the role of master server and continued 
rendering from the previous master’s last image 
update. Six additional processes were instantiated, 
which formed a topology with a single master server, 
a single slave server, and five client processes. The 
raytracer successfully passed all fault tolerance tests. 
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Figure 5 - Performance vs. Number of Clients/Server 

  
6 CONCLUSIONS 
 
 The results of our work show that our 
hierarchical master-slave design is not only a feasible 
pattern for implementation, but effective in 
maintaining speed increases across large numbers of 
clients, limiting excess network congestion, and 
maintaining fault tolerance in the presence of many 
types of process failures. The tiered design distributes 
not only the individual task of rendering the scene, but 
also the management of this distribution. Since this 
client management is separated among each slave 
server, no single machine is overwhelmed by requests, 
and the total network overhead involved in a rendering 
operation is reduced.  Finally, the multi-level design 
allows for an application-level approach to effective 
fault tolerance that is able to contain the occurrence of 
failures to a specific portion of the hierarchy and can 
therefore withstand any number of simultaneous client 
failures and any type of non-concurrent server failure. 
 
 We achieved a near linear increase in 
performance in our tests, demonstrating that the 
overhead involved with the fault tolerance and work 
distribution was minimal in comparison to the 
increase in overall rendering speed. Even with this 
initial implementation, we observe that the 
approximate ideal number of rendering clients in our 
particular system approaches 50 to 100, which would 
likely improve with optimization of the code, batch 
size, and server-to-client ratio. Our tests also revealed 



that a single-tier design, as simulated in our 20 clients 
per server test run, is markedly slower than our three-
tier design in total rendering speed. Our initial 
assumption about the benefit of this design over the 
simpler arrangement of single server and multiple 
clients is therefore strongly supported. It can be 
predicted, from this data, that as a system like this 
grows larger and larger, it reaches a point where the 
addition of a new tier of data management would 
greatly benefit the overall efficiency of rendering 
progress. However, a dynamically tiered system is left 
as potential future work, as described in the following 
section.  
 
 Overall, the design and its implementation 
were a success, and we achieved the increase in 
performance and resilience to failure that we expected 
during the onset of the project. Raytracing provides an 
ideal problem in the field of distributed computing, 
and demonstrates that a tiered design with failsafe 
mechanisms is an essential part of dealing with the 
massive numbers of clients and scene complexity 
associated with raytracing. 
 
7 FUTURE WORK 
 

This parallel raytracer focused on 
implementing a modified master-slave design that 
could scale to handle a large number of clients and 
withstand any type of non-concurrent server failure or 
simultaneous client failure in the system. Now that 
this pattern has been determined to be feasible and 
beneficial in the context of a parallel raytracer, there is 
much room for improvement in the areas of scene 
distribution, load balancing, and simultaneous server 
failure handling. If used in a professional setting, such 
as a visual effects studio, the scene data used by a 
raytracer can grow to be very large in size. Because 
this data must be spread among many servers and 
clients, it would be useful to implement a type of 
scene partitioning to spatially separate various objects 
in the scene and send only the parts needed by the 
server or clients. Server and clients could then request 
scene data on the fly and cache it as needed.  

 
Load balancing also plays an important part 

in parallel raytracing. Due to the fact that certain rays 
in a scene may involve relatively more complex 
calculations, it is useful to be able to take this complex 
section of image data and dynamically split it up 
among more clients than what is assigned by default. 
The current implementation of our raytracer performs 
very coarse, static load balancing, basing its image 
separation on lines which contain many pixels, each of 
which is assumed to require a similar amount of 
computation time. While this granularity of image 
division, in most cases, results in an even separation 
of work, there may be cases when particularly 
complex portions of a single line demand a finer 
granularity. 

 
An obvious problem in our architecture is 

that it cannot handle multiple, simultaneous server 

failures. While the design can withstand an unlimited 
number of simultaneous client failures, it cannot 
handle simultaneous loss of both the master and the 
next-of-kin servers. Future work to alleviate this 
weakness could involve the implemention of a 
multicast messaging protocol for leader election of a 
new master when this type of failure occurs.  
 

The number of tiers in the system could vary 
as the size of the total workload increases, reducing 
the workload on the master server. Adaptive master-
slave work scheduling systems have been studied 
extensively in previous work [4, 8]. Dynamic 
topology would effectively reduce the branching 
factor of connections in the system. However, the 
complexity of this arrangement may create a larger 
opportunity for failures to occur in the midst of 
network rearrangement, and therefore present a 
challenge in maintaining the current level of fault 
tolerance. 
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